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A b s t r a c t

This paper describes the Modeling and Control Synthesis (MACSYN)
Toolbox, which is an integrated software package for system identification,
modeling, and robust control. ‘Using MACSYN,  the plant is identified in
state-space form, and modeling errors are characterized in terms of norn~-
bounded weighting functions in a form that can be used with modern robust
control design software packages. An automated framework simplifies the
modeling and control design procedure, and enables robust high-performance
feedback designs for systems which would be otherwise dificult to control
reliably. MACSYN is implemented as programmable M-files in hIATLAF1.



1 Introduction

The Modeling  and Control  Synthesis (MACSYN)  Toolbox provides a method-
ology and software tools to identify a linear time-invariant plant and its un-
certainty bounds in a form directly useful for robust control design. The
plant is estimated in state-space form, and uncertainty models are generated
in terms of norm-bounded weighting functions, to precisely capture (to a
specified statistical confidence) the cmpiricrd  plant set. Here, the empirical
plant set is defined as the set of plants which can’t be discounted based on
the meamred data. With the plant and uncertainty in the desired form,
standard software packages such as the hiATLAB  Robust Control Toolbox
can be used to design robust controllers with the desired properties.

The main idea is that robust controllers designed with respect to the
empirical plant set will tend to be more reliable than those designed with
respect to less syste]natic or ad-hoc specifications of the uncertainty set.
This approach enables robust high-performance feedback design for systems
which would be otherwise difhcult  to characterize and control reliably. The
MACSYN  toolbox is used in conjunction with MATLAB’s  Robust Control
Toolbox and Control System Toolbox.

The MACSYN toolbox can be divided into 4 functional modules (Fig.
1):

Module 1: Input excitation design, Spectral estimation routines

Module 2: State-space system identification routines (Curve fitting, State-
space realization, etc. )

Module 3: Model uncertainty characterization and overbounding

Module 4: Control law synthesis routines utilizing plant and uncertainty
models from Module 2 & 3 to call the Hm-based methods from Robust
Control Toolbox

The following sections will elaborate each module.

2 O v e r v i e w

A linear multivariable plant P(z) is identified in the representation shown in
Fig. 2. Many modern robust c?ntrol methods are applicable to uncertainty
expressed in this form. Here, P(z) is a nominal estimate of the-true plant
P(z); A A is the additive uncertainty defined M AA = P - P; C(z) is
the digital controller under consideration; d is a disturbance, and W~(z)
is a frequency weighting filter which characterizes ,t}~e effect of d(k)  on the
open-loop plant output y(k).  For control design purposes, it is desirable to
represent the additive uncertainty in the form A A = AWA such that A is
norm bounded, i.e., such that I]AI]W < 1. The filter  WA is then typically
incorporated into the control design, to ensure robustness properties over
the additive uncertainty set. Alternativelyi for square plants, a multiplicative
uncertainty representation AM = (P–})P-l can be used, and the associated
weighting filter W M computed where AM = AWM  with A nOMll bounded.
This toolbox identifies a nominal  plant estimate ~, and a weighting filter  WA

such that the relation P = P + A WA holds (or a filter W M such that P =
(1+ AWA)@ holds), for some l]Allm  <1 to a specified statistical confidence”
I – K specified by the designer. Robust control synthesis methods can then
be used to find a compensator C that has desirable stability /perfornlance
properties for all plants in the uncertainty set defined by P and W A (or ~’
a n d  W~).
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Figure 1: MACSYN  Concept: Frequency Domain ID and Robust Con-
trol Design.
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Figure 2: Canonical representation for identification and robust control



3 Design E x a m p l e

A single example is carried throughout the paper and used to demonstrate
each module. The cxampIe  problem concerns identification and control de-
sign for the CRAF/Cassini  spacecraft High Precision Scan Platform (HPSP)
Articulation/Pointing control system. The CRAF spacecraft design with
boom-mounted HPSP is shown in Fig. 3.
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I Figure 3: CRAF Spacecraft with Righ Precision Scan Platform

In this example, a 2-input/2-output transfer function is to be identified
and controlled, where the azimuth (AZ) and elevation (EL) HPSP motor
torques are used as inputs, and the AZ and E1, angular positions (i.e., inte-
grated rate from a 3-axis Inertial Reference Unit) are chosen as outputs. A
Bode magnitude plot of the 2 x 2 nonminimum-phase HPSP transfer function
is shown in Fig. 4, as determined using physical modeling techniques, “l’his
transfer function will serve as a ‘truth” model for demo purposes.

4

4 . 1

The
this

MODULE 1

i n p u t  E x c i t a t i o n

approach  begins  with  the generation of plant input-output data. For
purpose, a multisinusoida]  signal u, is used for plant excitation, of the

general form,
n,

u,(k) = ~~=  c~s(~ik7’+  dt) ( 1 )

i=. ~

w h e r e  T  i s  the  sampl ing  per iod ,  w,  = 2rri/TP,  l; = N,T, ILS  < N./2.
For efficient computation using an Fast Fourier Transform (FFT)  the total
number of frequency grid points N~ should be chosen rM a power of 2. This
signal has  a non-zero power spectrum over a finite grid of points in frequency
domain. The amplitudes ~i can be arbitrarily assigned to make any desired
profile in the frequency domain. The phases d, arc chosen (as a function of
~i)j to minimize peaking in time, using a formula first given by Schroeder
[6].
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Figure 4: Bode magnitudes of 2 x 2 HWF’ transfer function

4 ,2  Spec t r a l  Es t ima t ion

The signal u, is applied to the plant until the output reaches steady-state.
Input/output data are gathered in steady-state, and averaged to produce
a spectral estimate Ps of the plant, a statistical overbound on the error
5(PS  — P), and a nonparametric estimate of the noise coloring profile W~
(cf., [6][7]). MIMO data are gathered in separate SIMO experiments, one for
each input. Responses are measured and processed to give raw multivariable
frequency domain estimates.

The input design and spectral estimation is implemented using the fol-
lowing MA’1’I,AB functions:

schroeder
tfest

4 . 3  Design

MIMO data is

multisinusoidal  input designs
frequency domain estimation

Exa?nple (Reviiitcd)

acquired in two separate S1 MO experiments. Based on the
response data, the” plant and asso~iated  uncertainties are characterized and
a robust controller is designed.

An input excitation for each SIMO experiment is designed using routine
schroeder, with sampling time T=. 05 and number of points Ns=512.

For the first SIMO  experiment the input excitation signal is designed
using a saturation limit of usat=. 5, and flat spectrum design. A plot of
the input design and its spectrum is shown in Figure 5. The flatness of the
excitation spectrum is clearly seen in this figure. ‘l’he excitation is applied
to the first input, and nskip=5 windows of data are skipped, in order to wait
for the system to reach periodic steady-state. Once in periodic steady-state,
nvin=20 windows of data are collected.

Likewise, a SIMO experiment is performed from the second input. For
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Figure 5: Schroeder excitation for input one (AZ)

this experiment, the input excitation is designed with an actuator satura-
tion level of usat=l and a flat spectrum design. As in the first experiment,
nksip=5 windows are skipped, and nuin=20 windows of data are collected.

The two  SIMO data sets are stacked into a single MIMO data set. The
MIMO data is passed to the spectral estimation routine tfest, which com-
putes a plant spectral estimate, the spectral estimation error (to 95% confi-
dence) and disturbance spectrum. The plant spectral estimates are shown in
Fig. 6. Plots are restricted to the first column of the 2 x 2 transfer function
due to space limitations.

5 MODULE 2

A state-space model is determined using the State-Space Frequency Domain
(SSFD)  algorithm [5] involving a two-step procedure of complex curve fitting
and state-space realization.

5 . 1  C o m p l e x  Curwc  F i t t i n g

First, the spectral estimate Ps is curve fitted to obtain a rational transfer
function model P“(z) = Ii(z)/a(z) where B(z) is a matrix polynomial, and
a(z) is a scalar polynomial,

P“(2)  = ~
a(z)

(2)

B(z) = Bo+-B]z-l + . ..+ J!?nz-n (3)

a(z) == 1 +- al.z-] + . ..+anz-” (4)
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‘I’he curve fitting approach based  on minimizing a weighted 2-norm error
criteria of the form,

(5)

where the Frobenious  norm is defined as,

11X11;  = Tr{x”x} (6)

and “ * “ denotes the complex conjugate transpose.
The minimization procedure consists of a Gauss Newton (GN) algorithm,

initialized by a suboptimal fixed point iteration, denoted as the SK iteration,
due originally to to Sanathanan and Kocrner.  The algorithm uses sparse
matrix methods to take advantage of the special structure associated with
large hIIhIO  problems (cf., Bayard  [4]). The frequency weighting ~~(~:) can
be chosen to reduce error in frequency regions whic}l are most relevant to the
control design.

5 . 2  S t a t e - S p a c e  R e a l i z a t i o n

Using a singular value decomposition of the Hankel  matrix of Markov parame-
ters associated with PO(z),  the transfer function matrix is realized/balanced/reduced
to give the state-space model,

F’: Xk+l =  Azk +  ~Uk (7)

Yk =  cZk +- ~Uk (8)

Curve fitting and state-space realization are performed using the following
zinfit complex MIMO curve fitting

MACSYN functions: 22ss state-space realization
z2ssi state-space realization (interactive)

5 . 3  D e s i g n  E x a m p l e  ( R e v i s i t e d )

In the curve fitting step of the SSFD  algorithm, a rational transfer function is
fit to the plant frequency data by the routine zinfit. l’he curve fit is chosen
with denominator order na=22,  uniform frequency weighting, and niter=4 ~
iterations of the SK algorithm are specified.

In the second step, a state-space realization is performed by the routine
p2ssi. This routine in interactive. It provides the user with a plot of the
Hankel  singular values and asks the user to specify the number of singular
values to retain. The number specified will correspond to the number oj
states  in the final state-space realization. The singular values for the demo
problem are shown in Fig. 7.

There is a large  break in the singular values after 44, since there exists an
exact state-space realization of this order.  T}~e value of 44 is used to continue
the demo, which corresponds to a negligible model reduction error.

The Bode plot of the state-space realization of order 44 is plotted in Pig.
8 against the spectral estimate for comparison. The plot is restricted to the
first column of the transfer function due to space limitations.

6 M O D U L E  3

6 .1  M o d e l i n g  E r r o r s

An additive uncertainty bound t?~-K(w) ~ F(P – P) is c}~aractcrized  in non-
parametric form to within statistical confidence (1 – K) x 100% (specified by



Hankel Singular Values
10° ~—~—, . . . . . . , ,—-—.r..T..—T—. ..y..._.–,  . . . ..—

1

:Xx;

I

104

[ ‘ ~. . . . ,: . . . . . . :..
10”’ 0 - } .

k1 0 - ’2  -’ “!’’” !’ . ...:

:’

;.. .

:. .,...I
L’ %x:,:

10-200 —.i.~~ . . ..i...-...i--.-i- .-—–‘J
5 10 15 20 25 30 35 do 45 50
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the’ designer). The basic idea is to use the triangle inequality,

‘-K(W)17( ’P(Wi) — f’(w))  < Ess + Ese < tA (9)

Es* = 5( P,(LJi)  - F’(Ldi)) (lo)
E.. =  F(P(Ldi)  –  

P.(LJJi)) (11)

Here, ~., is the error in the state-space model (with res~ect to the spec-
tral estimate), and can be calculated exactly since P, and P are known. In
contrast, the spectral estimation error ESC is a probabilistic quantity. It is
not known exactly (because the true plant is unknown), but can be bounded
statistically to any desired confidence level (1 – K) . 100~0 from the spectral
estimation errors [6][7]. The resulting bound on the additive error is denoted
~ e;-”. A similar bound on the multiplicative error can be determined, and
is denoted as l~-’.

For visualization purposes, it is useful to use the triangle inequality a
.second time, and split the error l,SS as,

E/it = 5(P, –  I’”) (13)

E,.~ = Z7(P” - P) (14)

The term .Ej,,  denotes the error incurred in the curve fitting step, and the
term Ero~  denotes the error from reducing the order between the curve fit
model P“ and the state space model ~. Both terms can be computed exactly
and displayed to indicate the relative contributions of the various errors.



.120j’’’’ ” ’ ” . ” ” ,L _ _ .  -.l—–l-.–._.-.  J _L_ J—-..—_  L.-...  ..-1 - .–-.–A —.-
1 2 3 4 5 6 7 8 9 10

Frequency (Hz)

.200;~_.__.~—_—_l__  .___L.—J.  _  . _ _ . L _ _ _ _  – _ _  L_. __L__.  ___ L____

1 2
_J

3 4 5 6 7 8 9 10
Frequency (Hz)

Figure 8: Identified State Space model and spectral estimate, Y1/U 1
and Y2/Ul  transfer functions



6 . 2  U n c e r t a i n t y  Ovcrbouncling

The nonpararnetric  additive uncertainty profile ~~-x(~) in (9) is overbounded
(tig}ltly)  by a parametric minimum-phase transfer function kl’~ of specified
order, i.e.,

IVVAI  = b(2)/a(z) > /j-K(w) (15)

The method used for ovcrhounding  is the linear programming spectral over-
bounding and factorization (LPSOF) algorithm [10]. This algorithm finds
a tight (i.e., globally minirnax)  overbound W,4 on the additive error (or
overbound  WM on the multiplicative error), of specified order.  With this
construction, the additive uncertainty has the form AA = AWA (or the mul-
tiplicative uncertainty ha-s the form AM = AWM), where llAllm  < 1 is norm
bounded. Model error characterizations are determined by the following
MATLAB functions,

moderr componentwise modeling error
bounder uncertainty characterization
overbound uncertainty overbound
factor. mimol uncertainty spectral factorization

6.3 Design Example (Revisited)

Components of the modeling error are calculated by the routine nloclerr,
and are summarized in the plot shown in Fig. 9. This plot shows the relative
contributions of the spectral estimation error, ese (dotted); the curve-fit
error, efit(dasshed); and the model  reduction error, erom (o) to the total
additive uncertainty, eadd (+).

As a rule of thumb, in order to achieve a control design of a specified
bandwidth, it is desired for the additive uncertainty (+) not to exceed <(})
(solid) (thus ensuring a multiplicative error less than unity), except possibly
at frequencies where ~ is small in magnitude (i.e., providing small  loop gain
at those frequencies). With this guideline, it is seen from Fig. 9, that a
control bandwidth of 5 or 6 Hz is reasonable.

If greater control bandwidth is desired, the uncertainty must be reduced
accordingly. From Fig. 9, one can discern the dominant error components in
each frequency regime. For example, the reduced order modeling error erom
(o) is seen to be negligibly small due to the full 44 states retained in the
earlier state-space realization step. The largest component is the spectral
estimation error (dotted), which is the same order of magnitude aa (and ob-
scured in the plot by) the total additive uncertainty (+). Hence, for this demo
problem, improved control performance requires reducing and/or reshaping
the spectral estimation error, which in turn requires taking additional ex-
perimental data and possibly redesigning the frequency shaping profile of the
input excitation.

The multiplicative uncertainty is also calculated by moderr  and is shown
in Fig. 10. The control design can be computed in terms of either the additive
or multiplicative uncertainties.

For this demo, the multiplicative uncertainty description will be used.
The total multiplicative uncertainty is overbounded by a stable, minimum
phase, rational transfer function W M . The overbound is constructed by
calling the routine bonnder  with order=2. The overbound  should be as tight
a.s possible in order to avoid conservatism in the final robust control design.
The tightness of the overbound is manipulated by specifying data points
where the tightness of the overbound is optimized and/or by constructing a
ceiling that puts a cap on the overbound.
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The multiplicative uncertainty and overbound  for the demo problem,
obtained using the bounder routine are shown in Fig. 11.
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7 MODULE 4

7 . 1  R o b u s t  C o n t r o l  S y n t h e s i s

Robust control synth~sis  tools are used to find a robust controller using the
identified values of P and W A (or WM). Three key fundamental issues in
any control system design, stability, robustness and performance, can all be
captured in one robust control problem formulation and solved as one single
H’ and/or HM optimization problem [2].
The following is a popular two-block mixed-sensitivity example illustrating
a standard problem formulation of the robust control design (Ref. Fig. 12)
[3]:

(16)

w}~ere S = (1 + >C)-l is the sensitivity junction, T = }C(I + }C)-l
is the complementary sensitivity function, C is the compensator, and WI
and Ws are weighting functions that penalize pcrjormonce  and robustness,
respectively. To ensure robustness with respect to the estimated plant set,
weighting W3 is chosen as the multiplicative uncertainty weighting W M de-
rived above.
Robust control loop shaping tools available in Robust Control Toolbox [2]
can be called directly from MATLAB environment:

(d)hinf (discrete) continuous H~ synthesis
(d)h21qg (discrete) continuous H* synthesis
musyn p-synthesis method
Ssv mixed real/comp}ex  robustness analysis
bstschmr,... singular value based model reduction
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7,2 Design Example (Revisited)

The weighting functions W I and W3 are displayed in Fig. 13 for the two-
block mixed-sensitivity formulation. Weighting Ws is chosen as the estimated
multiplicative uncertainty bound WM.

W3 D&ign “Weighi

Frequency- k

Figure 13: Weighting functions WI and Ws.

Routine dhinf from the Robust Control Toolbox [2] performs a series
of tests for the existence of solutions of the required Rlccati  equations and
the H-infty  controller. Once these tests are complete, an H~ controller is
designed. The resulting 52-state, 2 x 2 robust Hm control design is shown in
Fig. 14. Included are four plots for controller evaluation.

The upper left plot (1 ,1) is the Hinf Cost function. The closer the value is
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to O db, the closer the desired loop shaping is achieved for the given weighi-
ngs. The upper right plot (1,2) is the Hinf controller singular value plot. The
lower left plot (2,1 ) is the sensitivity weighting WI-] and sensitivity function
S. Ideally, these curves should “hug” each other closely at low frequencies.
The small value of sensitivity at low frequency guarantees disturbance re-
jection up to particular frequency range and good tracking of the platform
command.

The lower right plot(2,2) is the inverse weighting W;] and the  achieved
complementary sensitivity function T (closed loop transfer function from
input to output). The peak of the complementary sensitivity function T
determines system robustness against multiplicative uncertainty. The roll-
off rate indicates the system bandwidth, robustness against high frequency
uncertainty, etc. A small gap is intentionally left for additional robustness,
beyond that required to capture the effects of identification errors.

The final controller achieves the design specifications, and ensures ro-
bustness with respect to the plant set consistent with the meassrrred data.
This serves to illustrate the end-to-end automated ID and control synthesis
capability using the MACSYN toolbox.

8 S u m m a r y

The Modeling and Controi  S~nthcsis  (MACSYN)  Toolbox is an integrated
software package for system identification, modeling, and robust control.
The main idea is to identify the plant and the modeling uncertainty in a
form which is directly usable by modern robust control design formulations.
Specifically, the plant is identified in state-space form, and modeling errors
are characterized in terms of norm-bounded weighting functions. An auto-

mated framework simplifies the modeling and robust control design proce-
dure.

Since MACSYN.  presently assumes t}lat the plant is linear and tin]e-
irrvariant, not all plant uncertainties and modeling errors are captured in the



ernpiracle  plant set.  Hence, the presence of time varying plant paratneters,
nonlinearities,  and other complexities may require certain modifications of
t}~e approach. For example, the designer may wish to add extra uncertainty
blocks to increase the robusthcss in the final control design. Hence, ” like
any tool, the MACSYN toolbox should be used with the best engineering
judgement, and is flexible enough to be combined with other approaches to
obtain the best final control design.

The MACSYN  concept was  originally developed at NASA’s Jet Propul-
sion Laboratory, for applications involving the identification and control of
high-order rnultivatiable systems over wide bandwidths (e.g., large space
structures, adaptive optics applications, etc.). However, the underlying func-
tions are generically useful and can serve the needs of various industrial ap
placations such as process control, aircraft flight control, and automotive,
robotic and manufacturing control systems.
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